Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

نویسندگان

  • Shihua Chen
  • Fabio Baronio
  • Jose M Soto-Crespo
  • Yi Liu
  • Philippe Grelu
چکیده

We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chirped Self-similar Pulse Propagation in Cubic-quintic Media

We consider nonlinear propagation of optical pulses in a cubic-quintic nonlinear medium wherein the pulse propagation is governed by the generalized nonlinear Schrödinger equation with varying dispersion, nonlinearity and gain/loss. Using the self-similar analysis, we present the generation of chirped bright solitons in the anomalous dispersion regime as well as the normal dispersion regime und...

متن کامل

Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.

Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easil...

متن کامل

Stability of spinning ring solitons of the cubic-quintic nonlinear Schrödinger equation

We investigate stability of (2+1)-dimensional ring solitons of the nonlinear Schrödinger equation with focusing cubic and defocusing quintic nonlinearities. Computing eigenvalues of the linearised equation, we show that rings with spin (topological charge) s = 1 and s = 2 are linearly stable, provided that they are very broad. The stability regions occupy, respectively, 9% and 8% of the corresp...

متن کامل

1 3 Ju n 20 09 Bifurcation of gap solitons in periodic potentials with a sign - varying nonlinearity coefficient

We address the Gross–Pitaevskii (GP) equation with a periodic linear potential and a periodic sign-varying nonlinearity coefficient. Contrary to the claims in the previous works of Abdullaev et al. [PRE 77, 016604 (2008)] and Smerzi & Trombettoni [PRA 68, 023613 (2003)], we show that the intersite cubic nonlinear terms in the discrete nonlinear Schrödinger (DNLS) equation appear beyond the appl...

متن کامل

On existence of dark solitons in cubic-quintic nonlinear Schrödinger equation with a periodic potential

A proof of existence of stationary dark soliton solutions of the cubic-quintic nonlinear Schrödinger equation with a periodic potential is given. It is based on the interpretation of the dark soliton as a heteroclinic on the Poincaré map.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 93 6  شماره 

صفحات  -

تاریخ انتشار 2016